SIMMAX ENERGY

Presents

A Bowman Microturbine at the Holiday Inn

January 20, 2004 Brian Inglett

SIMMAX Group of Companies

SIMMAX Corporation

- Simmax Energy, Simson Maxwell, ADCO Power
- Develops, builds, owns and operates generation facilities
- Provides Cogeneration/ Generation equipment sales and service
- Experts in international power plant construction
- In operation for over 60 years

SIMMAX Group of Companies

- SIMMAX Energy
 - "Simple Solutions Maximum Energy"
 - Own and operate 14 DG sites in Southern CA
 - 5 Microturbine sites including Bowman, Ingersoll-Rand, and Turbec
 - In the business of selling ENERGY not equipment
- TransAlta
 - SIMMAX financed by TransAlta
 - TransAlta Corporation
 - traded on the NYSE under the ticker TAC
 - \$5 Billion in Assets and over 9,000 MW of generation

Organization

- Original Project development and funding was provided by Sempra Energy Connections
- Simmax acquired all Sempra Energy Connection sites in February 2003
- Sempra Energy Connections Project Manger Alex Kim
- Engineering was provided by All Temperatures Controlled

Site Description

- Location La Mirada, California
- 80kW Bowman Microturbine
- Peak shaving Operating hours from 8:00am to 9:30pm
- Waste heat used for laundry and domestic hot water
- Electricity used for peak shaving

Costs

Engineering Costs	\$9,700
Permitting Costs	\$300
Microturbine	\$80,000
Fluid Cooler	\$5,000
Construction Cost	\$70,000
Electrical Interconnection Cost	\$500
Gas Interconnection Cost	\$5,200
Heat Exchanger	\$16,000
Misc Costs	\$27,300
Total Costs	\$214,000

Costs Continued

- Previous owner spent an estimated \$214,000 dollars on installation costs.
- A significant amount of this cost was spent on "learning the business."
- There were change orders and costs associated with correcting design oversights.

Costs Continued

100% Hindsight

- More attention to the thermal load than the electrical load
- Application must be able to use most of the heat
- Size of hot water loop must be considered for thermal reaction time
- Applications may not be "plug-n-play"
- Proper engineering on the front end is an absolute must

Cost Continued

50th Installation

- Standardize fleet of generators being used
- Standardize the type of pumps, valves, heat exchangers and so on
- Build off of previous engineering experience to reduce engineering costs

Electrical Performance

- Hours of operation to December 31, 2002 is 9,800 hours.
- Average Electrical Performance is approximately 23% (Net).
- Electrical Power delivered to load is 78kW.
- Parasitic Losses are 5.5kW.
- Power Quality is approximately 2.0% or less THD per phase.

Improvements

- VFD used to replace the thermal switch control on the dump radiator
- Circulation pumps added to both laundry and domestic hot water loops to improve waste heat recovery.

Thermal Performance

- Measured maximum of 450 kBTU/hr (maximum heat from microturbine is 500 kBTU/hr).
- The site consumes an average of 375 kBTU/hr.
- Delta T across heat exchangers is 10 to 20 degrees F. This varies as a function of site usage.
- Average Thermal Efficiency is measured at 44%.
- Expected Peak Total System Efficiency (Electrical + Thermal) is 75%.

O&M Performance

- Availability is 85.28%
- Average number of hours the unit is down per month is 7 hours.
- Annual O&M costs are difficult to estimate outside of the warranty. Annual PM costs are estimated at \$3,000 annually.
- Unscheduled failures can impact O&M costs significantly. Spare part availability and cost are current industry issues.

Institutional Experience

- Site developed by Sempra Energy Connections.
- Permitting issues can cause the project to slip schedule.
- CARB (California Air Resources Board)
 requirements for January 1, 2003 compliance is
 an issue in the California market.
- The electrical interconnection has not been an issue to date.

Supplier Support

- Bowman Power's Technical Support is very good.
- Trained Distributor Technical Support is still developing.
- Spare parts availability is an issue in their availability to have parts shipped from the manufacturer to the end user. (There is a limited stock of spare parts locally.)

Supplier Support Continued

 Bowman has performed very well in supporting and resolving all warranty issues.

General Experience

Improvements for future installations:

- Packaging for smaller footprints
- Integrating the fuel gas compressor into the package
- UL certification
- CARB certification

General Experience Continued

Future market development will be driven by economics.

- Existing transmission grid is heavily loaded.
 Distributed generation can relieve a portion of this loading.
- Lowered installation and maintenance costs.

R&D or development should continue to support complimentary technologies.

Absorption Chilling

Questions?

Contact Information

Web Site: www.simmax.com

Mail: Brian Inglett

Operations Manager

Simmax Energy

2124 Main Street, Suite 195

Huntington Beach, CA, 92648

Contact Information:

Phone: (714) 374-6901

Fax: (714) 374-6902

Email: inglettb@simmaxenergy.com

